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Abstract

Neonatal (early) handling (EH) and environmental enrichment (EE) of laboratory rodents have been the two most commonly used

methods of providing supplementary environmental stimulation in order to study behavioral and neurobiological plasticity. A large body of

research has been generated since the 1950s, unequivocally showing that both treatments induce profound and long-lasting behavioral and

neural consequences while also inducing plastic brain effects and being ‘‘protective’’ against some age-related deficits. The present work is

aimed at reviewing the main neurobehavioral effects of both manipulations, with the final purpose of comparing them and trying to find out

to what extent the effects of both treatments may share (or not) possible neural mechanisms. D 2002 Published by Elsevier Science Inc.
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1. Introduction

Early postnatal stimulation [early (neonatal) handling

(EH), in its most frequent form] and environmental enrich-

ment (EE, the exposure of juvenile/adult animals, for weeks

or months, to environments rich in sensory stimulation)

have been shown to produce profound and long-lasting

behavioral and neurobiological effects. Both treatments

have been reported to variously influence activity, explora-

tion, emotionality/fearfulness and unconditioned and con-

ditioned learning tasks in laboratory rodents. In addition,

both manipulations appear to induce ‘‘protective’’ effects

against age-related cognitive deficits and some associated

physiological and neural processes (e.g. Anisman et al.,

1998; Fernández-Teruel et al., 1997; Mohammed et al.,

1993; Renner and Rosenzweig, 1987).

However, although some of the recently reported effects

of both treatments may be seen as rather similar (e.g. long-

term improvements in spatial learning and ‘‘protective’’

effects against age-related behavioral deficits) (e.g. Fernán-

dez-Teruel et al., 1997; Meaney et al., 1988; Pham et al.,

1997; Venable et al., 1988), the research conducted on

psychobiological and neurobiological effects of both manip-

ulations have traditionally followed different paths, i.e. since

the 1950–1960s researchers interested in the effects of

neonatal handling have focused mainly on its emotional/

endocrine effects (e.g. Levine and Broadhurst, 1963; Lev-

ine, 1957; Levine et al., 1967), while research on EE was

essentially focused on its morphological consequences in

the central nervous system and associated changes in

exploration or problem-solving tasks (e.g. Denenberg and

Morton, 1962a,b; Hebb, 1949; Hymovitch, 1952; see Ren-

ner and Rosenzweig, 1987 for a review).

The use of experimental designs to simultaneously com-

pare the effects and/or possible mechanisms of neonatal

stimulation (through handling) and EE have been, thus far,

very scarce. Thus, it is our purpose here to review the main

effects and/or putative mechanisms of both manipulations,

with the objective of presenting similarities and differences

between them and some possible common pathways

through which both treatments appear to produce at least

some of their effects. To this aim, special consideration will

be devoted to research in which both treatments have been
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administered separately and combined in factorial experi-

mental designs.

2. Effects of EH and EE on spontaneous behavior,

fearfulness and stress-related hormonal responses

2.1. Early handling

Levine et al. (Levine, 1956; Levine et al., 1956) provided

the first demonstration that EH induced an improvement in

the ability of rats to learn a two-way active avoidance task.

Several other studies have since confirmed those results,

additionally showing that the improving effects of EH

extend to several different strains/lines of rats and are

remarkably long-lasting (Denenberg and Karas, 1961;

Escorihuela et al., 1991, 1992, 1994a, 1995a,b; Levine

and Wetzel, 1963; Núñez et al., 1995). As there is substan-

tial evidence indicating that the initial acquisition of two-

way active avoidance is anxiety-mediated (with relatively

high levels of anxiety/emotionality resulting in impaired

acquisition) (e.g. Aguilar et al., 2002a; Boix et al., 1988,

1992; Brush, 1991; Fernández-Teruel et al., 1991b; Gray

and Lalljee, 1974; Weiss et al., 1968), it has been proposed

that EH effects on that test are mainly due to an enduring

reduction of fearfulness.

Additional support for this proposal arises from a wide

range of studies most often demonstrating that EH increases

activity and specific exploratory behavior, usually associ-

ated with a decrease in defecation, in a variety of uncon-

ditioned laboratory tests involving different degrees of

novelty, such as the open-field test (e.g. Denenberg et al.,

1978; Fernández-Teruel et al., 1992a; Levine and Broad-

hurst, 1963; Levine et al., 1967), ‘‘timidity’’ tests and

exposure to ‘‘novel/unknown’’ cages (Ader, 1959, 1968;

Eells, 1961; Ferré et al., 1995; Núñez et al., 1995) (see also

Table 1), the hole-board test (Fernández-Teruel et al., 1992a;

File, 1978), tests of ‘‘tactual variation seeking’’ (De Nelsky

and Denenberg, 1967) and tunnel labyrinths (not involving

deprivation) (Fernández-Teruel et al., 1991a, 1992b, 1993).

Moreover, when tests more specifically measuring anxiety

or fearfulness (either unconditioned or conditioned) have

been used, it has been shown that EH treatment increases

exploration of the open arms in the elevated plus-maze

(Fernández-Teruel et al., 1990; McIntosh et al., 1999; Núñez

et al., 1995) and the number of visits to, and time spent, in

open/illuminated compartments in a tunnel labyrinth and in

the dark–light box (Fernández-Teruel et al., 1991b, 1992b;

Steimer et al., 1998) (see also Table 1), it decreases

hyponeophagia (i.e. novelty-induced fear) (Bodnoff et al.,

1987; Steimer et al., 1998), while it also reduces suppres-

sion of drinking and freezing in the lick-suppression conflict

test (Núñez et al., 1996). Thus, taking into account the

abovementioned effects of EH on two-way avoidance

acquisition and on tests measuring spontaneous or condi-

tioned emotionality/fearfulness and the observation that it

also reduces learned helplessness in rats (Tejedor-Real et al.,

1998), it seems safe to conclude that, from a behavioral

standpoint, EH-exposed subjects appear to have an

improved ability to adapt or to efficiently cope with highly

challenging and stressful environmental conditions.

A large body of research dealing with the influences of

infantile stimulation on endocrine function have substanti-

ated and completed the picture drawn from those behav-

ioral studies. Thus, EH has been reported to lead to an

earlier maturation of the adrenocortical response, reduced

corticosterone, ACTH and prolactin secretion in response

to several (either unconditioned or conditioned) stressors

and a faster return to basal pre-stress hormonal levels than

nonhandling (e.g. Ader and Grota, 1969; Levine, 1957;

Levine et al., 1957; Meaney et al., 1991; Núñez et al.,

1996; Steimer et al., 1998). It is especially worth noting

that those EH effects on endocrine responses to stress (as

well as on behavior) are extremely long-lasting (probably

the whole life span) and appear to be more marked in

strains/lines of rats or mice that are relatively more sens-

itive to stress (e.g. Anisman et al., 1998; Hennessy et al.,

1982; Meaney et al., 1988, 1991; Steimer et al., 1998;

Treiman et al., 1970) (see also Table 2).

2.2. Environmental enrichment

As noted by Rosenzweig (1979) (see also Renner and

Rosenzweig, 1987), M.V. Malacarne (1744–1816) was the

first author who investigated the influence of EE treatment

on the central nervous system. He found that birds that

received enriched training had larger brains (especially

evident in the cerebellum) than their nonenriched and

isolated counterparts coming from the same clutch of eggs

(see Renner and Rosenzweig, 1987). However, systematic

experimental research on the influence of rearing in

enriched environments (large cages, with several types of

objects and spatial configurations, which are frequently

changed) upon behavior (and thereafter upon brain devel-

opment) can be considered to have started in 1947, when

D.O. Hebb reported that animals raised in an EE showed

superior learning ability than their nonenriched counterparts

(Hebb, 1949; Forgays and Forgays, 1952).

A considerable amount of literature has since been

accumulated on EE effects upon spontaneous behavior,

learning and neurobiological processes (e.g. Fernández-

Teruel et al., 1997; Mohammed et al., 1993; Renner and

Rosenzweig, 1987; Van Praag et al., 2000). To summarize, a

frequent effect of EE treatment on spontaneous activity/

exploration in novelty situations is a long-lasting increase in

exploratory activity, for instance in the open-field test

(Denenberg et al., 1978; Ferchmin and Eterovic 1980;

Larsson et al., this issue; Ray and Hochhauser, 1969; Wid-

man and Rosellini, 1990) and in the hole-board test (Escor-

ihuela et al., 1994a,b; Fernández-Teruel et al., 1992a and

this issue), although there are also studies reporting contra-

dictory results (e.g. Fernández-Teruel et al., 1992a; Freeman
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and Ray, 1972; for a review, see Renner and Rosenzweig,

1987). An at least partial explanation for those inconclusive

results could be that EE-treated animals show a different

(i.e. a more complex and diverse) organization of explor-

atory behavior, as reported by Renner and Rosenzweig

(Renner, 1987; Renner and Rosenzweig, 1986, 1987; Wid-

man and Rosellini, 1990) in more detailed qualitative

studies. Two other factors to be taken into account to

explain those inconsistencies are the use of a variety of

testing situations that may not be reflecting ‘‘pure’’ explor-

atory behavior (e.g. some open-field-like tests with differ-

ential degrees of aversiveness) (e.g. Fernández-Teruel et al.,

1992a; Zimmermann et al., 2001) and the fact that, very

often, EE studies compare animals reared in groups in an

enriched environment with animals reared singly in a barren

environment, thus socially isolated (e.g. Mohammed et al.,

1993; Renner and Rosenzweig, 1987).

Although the consequences of EE on emotionality/anxi-

ety have been rarely studied to date, indications are that, if

anything, EE reduces fearfulness, as suggested by reduc-

tions of defecation in open-field-like tests (Fernández-Teruel

et al., 1992a; Freeman and Ray, 1972; Manosevitz and Joel,

1973; Larsson et al., this issue) and by increases in the

number of entries into (although not in the time spent in) the

open arms of the elevated plus-maze (Escorihuela et al.,

1994b; Fernández-Teruel et al., 1997). It is interesting to

note, however, that in one study in which EE rats had also

received EH, such a combined stimulation led to clear

Table 1

The subjects used for the experiments shown in this table (as well as for those of Table 4) were Roman high- (RHA-I/Verh) and low-avoidance (RLA-I/

Verh) rats

RHA-I/Verh RLA-I/Verh

Nonhandled Handled Nonhandled Handled

(A) Timidity

Number of litters 11 11 7 7

Approach to the frontal wall (%) 51 93* 0* 61**

Exploration of a novel object (%) 35 66* 0* 58**

(B) Dark– light hexagonal tunnel maze

Number of animals 12 8 12 8

Day 1

Total activity (counts) 191.7 ± 9.4 234.6 ± 19.9*** 132.2 ± 5.4*** 147.1 ± 7.0

Latency to enter to the center (s) 93.8 ± 12.3 36.0 ± 14.8**** 147.4 ± 18.7 119.7 ± 38.8

Entries to the lit center 14.2 ± 2.7 20.0 ± 3.3 3.2 ± 0.7*** 6.4 ± 2.2#

Day 2

Total activity (counts) 238.3 ± 9.2 273.7 ± 17.3 108.8 ± 11.2*** 141.9 ± 17.7#

Latency to enter to the center (s) 63.5 ± 14.6 15.0 ± 3.7**** 304.0 ± 34.3*** 162.4 ± 58.1y

Entries to the lit center 13.7 ± 3.4 29.1 ± 5.6*** 0.5 ± 0.3*** 6.9 ± 2.5y

(C) Dark– light box

Number of animals 22 8 22 8

Entries to the lit compartment 5.3 ± 0.9 9.0 ± 1.4z 2.5 ± 0.4 4.0 ± 0.8

Time in the lit compartment (s) 54.9 ± 10.2 105.4 ± 16.3z 43.7 ± 10.0 79.5 ± 21.0

These inbred strains have been derived (starting in 1993) through brother/sister mating from the outbred RHA/Verh and RLA/Verh lines, which have been

selected and bred since 1972 for their rapid (RHA/Verh) vs. extremely poor (RLA/Verh) ability to learn the two-way active (shuttle box) avoidance response

(see Escorihuela et al., 1995a, 1999). The RHA/RLA lines/strains are known to differ in many other respects, both at the behavioral and the neuroendocrine/

neurochemical levels, with the RHA being less emotionally reactive to stressors and more active copers than the RLA rats (e.g. Driscoll et al., 1998). The

effects of neonatal handling (see procedure in Escorihuela et al., 1995a) on different behavioral measures are shown in this table. (A) Timidity: Litters (4 weeks

old) of each sex and similar number of animals (4–8) were tested for timidity by partially pulling their home cages (approximately 15 cm) out of the rack.

Results (pooled for both sexes) are expressed as percentage of animals performing the indicated behaviors. (B) Dark– light hexagonal tunnel maze: Animals

(5.5 weeks old) were introduced into the dark ring of the maze and tested for 6 min over 2 consecutive days. Mean ± S.E.M. are shown. Overall, RLA-I/Verh

rats showed a higher latency to enter into the lit center, lower number of entries into this area and lower total activity as compared to RHA-I/Verh rats. Handling

treatment decreased the latency and increased the entries into the center and the total activity in both strains. There were ‘‘strain’’ and ‘‘handling’’ effects in all

variables across the 2 testing days [all F’s(1,39)� 8.4 and P�.006]. (C) Dark– light box: Animals (7.5 weeks old) were placed in the dark compartment and

observed for 5 min. Mean ± S.E.M. are shown. The number of entries into the lit compartment was reduced in RLA-I/Verh as compared to their RHA-I/Verh

counterparts [two-way ANOVA ‘‘strain effect’’ F(1,59) = 15.7, P< .001]. Handling treatment increased both the number of entries into the lit compartment and

the time spent in it [two-way ANOVA ‘‘handling effect’’ F(1,59) = 6.9, P < .02 and F(1,59) = 9.1, P < .005, respectively).

* P < .02 vs. RHA-I/Verh nonhandled group.

** P < .02 vs. RLA-I/Verh nonhandled group (c2).

*** P < .05 vs. RHA-I/Verh nonhandled group.

**** P< .05 vs. all groups.
# P< .05 vs. RHA-I/Verh handled group (Duncan’s tests).
y P < .05 vs. RLA-I/Verh nonhandled group.
z P < .05 vs. all groups.

A. Fernández-Teruel et al. / Pharmacology, Biochemistry and Behavior 73 (2002) 233–245 235



decreases of anxious behavior (i.e. higher percentages of

entries and of time spent in the open arms) in the elevated

plus-maze (Santucci et al., 1994). In tasks involving clas-

sical fear conditioning, there is some evidence of a lesser

expression of fear-related responses in EE-treated rats (e.g.

Nikolaev et al., in press; Larsson et al., this issue), whereas

long-lasting improvements of two-way active avoidance

acquisition have also been found in EE rats (Escorihuela

et al., 1994a; Ray and Hochhauser, 1969). These results,

although much less convincing than those that were men-

tioned for EH treatment, tend to indicate that EE may induce

some ‘‘anxiolytic’’ effects (at least in some instances; see

also below), which may be more pronounced when the tasks

or situations used are highly challenging for the organism

(e.g. the initial acquisition of two-way active avoidance).

Regarding the influences of EE treatment on endocrine

responses to stressors, it must be acknowledged that,

although EE animals appear to be less ‘‘behaviorally’’

stressed than control animals (see above), those results have

not received additional support from hormonal findings, as

HPA axis hormonal responses have not been shown to be

differentiated in EE and nonenriched subjects (Devenport

et al., 1992; Pham et al., 1999; Van de Weerd et al., 1997;

see Renner and Rosenzweig, 1987; Larsson et al., this

issue). Given that, when exposed to threatening situations/

tasks, EE-exposed subjects usually show a superior ability

to adapt or to cope when the situation is highly conflicting/

stressful and/or must be solved by using complex strategies

(e.g. in the initial acquisition of the two-way avoidance

task), it would be tempting to speculate that in such tasks

their hormonal responses could play a role and/or be

different from those of nonenriched animals (although, as

said above, experimental evidence supporting that hypo-

thesis is still lacking). Besides the aforementioned EE

effects on two-way avoidance acquisition (e.g. Escorihuela

et al., 1994a), which could be seen as congruent with the

above argument, another interesting insight along the same

lines comes from the work of Klein et al. (1994). Those

authors found that, compared with control rats, EE-treated

rats exposed to the presence of a cat (i.e. predator stress)

showed a clear decrease in a series of defensive responses

(e.g. unconditioned and conditioned freezing, ‘‘proximity

to/avoidance of’’ the predator compartment, latency to enter

into and time spent in the dark compartment were the cat

could be seen through a screen, etc.), thus indicating that the

EE rats experienced less stress and/or fear and/or that they

coped with it in a more active manner (e.g. showing less

freezing, more approaches to the predator screen, etc.) than

nonenriched (group-housed) rats (Klein et al., 1994).

Although it cannot be completely ruled out that changes

in learning or information processing abilities (due to EE)

have influence on the initial acquisition of two-way avoid-

ance (Escorihuela et al., 1994a) or in the behavior of EE rats

in the predator stress experiment (Klein et al., 1994), most

of the research emphasizes the role of fear/anxiety in these

two experimental situations. The use of complex (or espe-

cially aversive) procedures like two-way avoidance or

predator exposure could therefore be interesting approaches

to evaluate the influence of EE on endocrine responses.

[Note: In line with what has been proposed above, in a

study reported while the present review was in progress,

Roy et al. (2001) have shown for the first time that enriched

(BALB/c) mice presented a lower corticosterone response to

a predatory cat odor (cat feces) than the respective non-

enriched mice.]

2.3. Conclusion

There appear to be some similarities between the behav-

ioral effects of EH and EE treatments, which, considering

general behavioral (or psychological) constructs rather than

the specific behavioral measures used, we could attempt to

summarize as follows: (1) Both treatments tend to increase

activity and/or specific exploratory behavior in tests invol-

ving novelty (e.g. open-field, hole-board, etc.), although the

quality, diversity or organization of exploratory behavior

could differ between EE and EH, probably being more

complex in the former case. (2) Emotionality/fearfulness

(as measured, for instance, by novelty-induced defecation,

dark–light tests and elevated plus-maze) is more clearly

reduced by EH, although some results in the same direction

have been reported for EE. (3) Of particular interest is the fact

that in an anxiety-mediated aversive learning task, such as the

initial acquisition of two-way active avoidance, both treat-

Table 2

Effect of neonatal handling on stress-induced plasma hormone levels 20 min after a 5-min exposure to the open-field test

RHA/Verh RLA/Verh

Nonhandled

(n= 16)

Handled

(n= 14)

Nonhandled

(n= 14)

Handled

(n= 16)

Corticosterone

(ng/ml)

292.3 ± 16.1 257.7 ± 8.5 331.1 ± 15.2a 317.0 ± 11.3a,*

ACTH

(pg/ml)

1201.7 ± 77.4 1200.9 ± 83.1 1543.6 ± 91.7** 1298.0 ± 79.1

Animals were 22 months old. Mean ± S.E.M. are shown. The subjects were outbred RHA/Verh and RLA/Verh rats (see legend of Table 1 for details).
a Line effect, RHA/Verh vs. RLA/Verh [ F(1,59) = 5.6, P < .002].

* P < .05 vs. the RHA-I/Verh handled group.

** P < .05 vs. all the groups (Duncan’s tests after significant ANOVA).
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ments show a similar pattern of improving effects (without

increasing general activity), leading to the conclusion that

anxiety (or conditioned fear) is reduced in both cases.

Concerning basal and stress-induced hormonal responses,

it is clear that EH has a long-lasting, facilitating and

protective effect on HPA axis function, whereas the studies

carried out thus far do not show consistent effects of EE on

HPA axis responses (being the only exception to date is the

recent study by Roy et al., 2001) or a role for these hormones

in the behavioral and neurobiological actions of EE.

3. Effects of EH and EE on learning and memory

processes

EH has been shown to improve either acquisition or

memory function in various learning tasks (but see also

Daly, 1973), such as passive avoidance (e.g. Gschanes et al.,

1998; Wong, 1972), T-mazes (Wong and Jamieson, 1968),

spatial orientation in the Morris water maze (Aguilar et al.,

2002b; Meaney et al., 1988; Pham et al., 1997; Zaharia

et al., 1996) and two-way active avoidance (e.g. Escorihuela

et al., 1991, 1992, 1994a; Levine, 1956; Levine and Wetzel,

1963; Núñez et al., 1995). Absence of effects of EH or

otherwise inconsistent results have been most commonly

reported when the tasks used are relatively simple or involve

less motivational/emotional factors (see, for instance, Daly

1973; Denenberg and Zarrow 1971), although others have

reported that EH and even postweaning handling is able to

improve latent inhibition and prepulse inhibition in rats

(Krebs-Thompson et al., 2001; Peters et al., 1991).

EE also improves acquisition and/or retention in several

learning tasks, ranging from spatial and/or problem-solving

tasks (e.g. Bennett et al., 1970; Cooper and Zubek, 1958;

Denenberg et al., 1968; Denenberg and Morton, 1962b;

Forgays and Read, 1962; Freeman and Ray, 1972; Juraska

et al., 1980; Kempermann et al. 1997; Liljequist et al., 1993;

Mohammed et al., 1990; Paylor et al., 1992; Ray and

Hochhauser, 1969; Smith, 1972; Venable et al., 1988;

Woods, 1959; reviewed by Escorihuela et al., 1994b; Renner

and Rosenzweig, 1987) to the acquisition and long-term

retention of two-way active avoidance (Escorihuela et al.,

1994a). Likewise, EE has been shown to also improve

retention in nonspatial tasks and object recognition tests

(Escorihuela et al., 1995c; Rampon et al., 2000). Neverthe-

less, there are also reports of no effects of EE when the tasks

used are relatively simple, as for instance habituation (but

see also Larsson et al., this issue), visual discrimination,

passive avoidance or some tasks of visual discrimination

(e.g. Bernstein, 1973; Davenport, 1976; Freeman and Ray,

1972; Krech et al., 1962; Lore, 1969; Sjoden, 1976; see

review by Renner and Roseznweig, 1987).

It appears, therefore, that both EH and EE treatments

improve learning most consistently when the tasks used

have a relatively high level of aversiveness and/or complex-

ity, as do some spatial tasks (the most commonly used being

the Morris water maze) and the two-way active avoidance

task. In addition, the influences of both treatments on

learning ability appear to be lifelong (e.g. Meaney et al.,

1988, 1991; Fernández-Teruel et al., 1997; Renner and

Rosenzweig, 1987).

4. Effects of EH and EE on novelty/sensation seeking

In laboratory rodents (and this is especially clear in rats),

responses to novelty are ambivalent, as the desire to explore

novel/unknown environments is in competition with the

tendency to avoid them on the basis of fearfulness or

neophobia. Therefore, outcomes of activity and exploratory

behavior in laboratory rodents exposed to different degrees

of novelty have to be interpreted with caution, as the

meaning of the results can easily change as a function of

the degree of novelty involved in the specific testing

situation and a function of the environmental and/or bio-

logical background/history of the animals (e.g. Bardo et al.,

1996; Dellu et al., 1996; Gentsch et al., 1991; Zimmermann

et al., 2001).

The most common and current view of what is emotion-

ality and exploratory activity in rodents is that these two

constructs represent independent dimensions rather than

extremes of the same variable, although the outcomes of

factor analytic studies also indicate that both dimensions are

internally complex (e.g. Aguilar et al., 2002a; Fernandes

et al., 1999). Moreover, experimental approaches to that

issue also tend to support the idea of a separation or

independency between those two constructs (e.g. Abel,

1995; Dellu et al., 1996; Fernández-Teruel et al., 1992a;

Gentsch et al., 1991; Zimmermann et al., 2001). Thus,

experimental studies appear to agree in that directed

exploration or ‘‘novelty preference/novelty seeking’’ is

mainly reflected by conditions in which an animal can

make an unforced choice between the novel/unfamiliar

elements (e.g. objects or spaces) of the situation and those

which are more familiar or present fewer aspects of novelty

(e.g. Abel, 1995; Dellu et al., 1996; Escorihuela et al., 1999;

Fernández-Teruel et al., 1992a; File, 1978; File and Wardill,

1975; Zimmermann et al., 2001). Hence, studies on the

influences of EH and EE treatments on different types of

exploratory behaviors should take into consideration (1)

which variables are considered to reflect exploration rather

than pure, unspecific locomotor activity and (2) when and

under which experimental conditions exploratory behavior

can be considered to be congruent with novelty preference/

novelty seeking rather than emotionality.

It is therefore understandable that frequent inconsist-

encies are to be found in the literature on the effects of

EH and EE upon different measures of activity/exploration

in a variety of novelty tasks (see references in Section 2

above and see also Escorihuela et al., 1995a; Fernández-

Teruel et al., 1992a, 1997; Larsson et al., this issue; Renner

and Rosenzweig, 1987; Zimmermann et al., 2001). How-
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ever, if we focus upon studies which measure what can

actually be considered to be novelty preference or novelty

seeking, then the results would indicate that EH tends to

increase novelty preference in some cases (e.g. De Nelsky

and Denenberg, 1967; Fernández-Teruel et al., 1992a; Ferré

et al., 1995; File, 1978; Núñez et al., 1995; Steimer et al.,

1998; see also ‘‘exploration of a novel object’’ in Table 1A

and the difference in ‘‘latency to enter the illuminated

center’’ between days 1 and 2 in Table 1B). Interestingly,

however, in several experiments performed at our laboratory

(Escorihuela et al., 1994b), we introduced EH-exposed rats

into large environmentally enriched cages containing a

variety of novel stimulus objects in only one half-side of

the cage that was separated by an opaque panel from the

opposite side (not containing objects), where the animals

were confined for 5–10 min. When that panel was pulled

out a few (approximately 15) centimeters to allow the

animals to enter in the enriched side of the cages, it was

observed that EH rats entered that side and started to explore

the objects much faster than unhandled rats (Escorihuela

et al., 1994b).

On the other hand, novelty preference, and the complexity

of exploratory behavior in which animals engage, appears to

be clearly enhanced in EE rats (e.g. Escorihuela et al., 1995c;

Fernández-Teruel et al., 1992a; Larsson et al., this issue;

Renner 1987; Renner and Rosenzweig, 1986, 1987; Widman

and Rosellini, 1990), although faster habituation to novelty

(i.e. faster within-session decrease of activity and exploration

of novel objects) has also been found as a consequence of EE

(Zimmermann et al., 2001), thus suggesting that improved

spatial abilities (due to EE) could explain at least some of the

findings of EE effects on behavior under novelty conditions

(Zimmermann et al., 2001).

5. Neurobiological consequences of EH and EE

Both treatments have been found to have profound and

long-lasting neural and physiological consequences. EH has

been shown to induce (1) increases in hippocampal but not

cortical 5-HT and 5-HIAA in rats (e.g. Anisman et al., 1998

for a review; Núñez, 1997; see also Table 3), being that

effect specific for ‘‘consistent EH’’ but not for ‘‘inconsist-

ent/stressful mild stimulation’’ administered during the same

period (see Escorihuela et al., 1991, 1992, 1994a; Núñez,

1997) (Table 3); (2) increases in stress-induced dopamine

content in the nucleus accumbens of mice (see Anisman

et al., 1998 for review); (3) probable changes in cyclic AMP

(Anisman et al., 1998; Escorihuela et al., 1995c), which

could be related to the effects observed on 5-HT (see

Anisman et al., 1998); (4) increases in hippocampal orni-

thine decarboxylase (after a dexamethasone challenge)

(Gilad et al., 2000); (5) increases in the magnitude of

hippocampal long-term potentiation in young rats (Wilson

et al., 1986); (6) decreases of HPA axis responses to stress

(e.g. Meaney et al., 1988; Núñez et al., 1996) linked to

enhanced hippocampal type II glucocorticoid (GC) recep-

tors (e.g. Meaney et al., 1988); (7) increases of hippocampal

nerve growth factor (NGF) mRNA (Mohammed et al.,

1993; Pham et al., 1997); (8) increases in brain benzodia-

zepine (BZ) and GABA-A receptors (Bodnoff et al., 1987;

Bolden et al., 1990; Escorihuela et al., 1992) and up-

regulation of peripheral BZ receptors in adrenals and kidney

(Weizman et al., 1999); (9) enhancement of NADPH-

diaphorase-positive neurons (a potential marker of nitric

oxide-producing neurons) (Vaid et al., 1997); (10) apparent

attenuation of NMDA-induced convulsions and death in

psychogenetically selected rats (RLA rats) (see Table 4);

(11) increases in cortical dendritic spines (reviewed by

Pham et al., 1999) and (12) no changes on cortical phos-

pholipase-C b1 levels (associated to muscarinic receptors)

(Fernández-Teruel et al., 2000; Sallés et al., 1993).

For its part, EE has been shown to induce (1) higher

levels of acetylcholinesterase activity in subcortical and

cortical brain regions (e.g. Pögun et al., 1992; Por et al.,

1982; Renner and Rosenzweig, 1987); (2) higher hippo-

campal expression of the gene for the 5-HT1A receptor

(Rasmuson et al., 1998); (3) decreased b-adrenoceptor-
linked cyclic AMP accumulation in the hippocampus (an

effect that parallels that of some pharmacological treat-

ments, which improve age-related cognitive deficits) (see

Escorihuela et al., 1995c); (4) higher hippocampal expres-

sion of NGF and NGF-induced immediate early gene factor

(NGFIA) (even after a brief exposure to EE in weanling

rats) (see Mohammed et al., 1993 and references therein);

(5) higher hippocampal expression of GC type II receptor

mRNA (Mohammed et al., 1993); (6) greater excitatory

postsynaptic potential (EPSP) slopes in the dentate gyrus

(Foster et al., 2000; Green and Greenough, 1986), enhanced

hippocampal field potentials (Sharp et al., 1985, 1987) and

long-term potentiation (Hargreaves et al., 1992); (7)

increased hippocampal protein kinase C (PKC) activity after

only a 12-day exposure to EE in very young rats (between

postnatal days 15 and 27) (Paylor et al., 1992); (8) increased

Table 3

Effect of neonatal handling (consistent and inconsistent) (see text and

Escorihuela et al., 1991, 1992 for procedures) on the 5-HIAA and 5-HT

levels in cortex and hippocampus of adult Sprague–Dawley rats

Sprague–Dawley

Nonhandled

(n= 12)

Handled

(n= 6)

Inconsistently

handled (n= 6)

Cortex

5-HIAA (ng/g) 259.5 ± 10.1 291.5 ± 18.4 275.7 ± 18.6

5-HT (ng/g) 400.0 ± 17.1 414.0 ± 27.8 393.0 ± 19.4

Hippocampus

5-HIAA (ng/g) 270.8 ± 12.3 319.9 ± 21.8 * 273.1 ± 30.9

5-HT (ng/g) 262.6 ± 10.3 321.4 ± 8.9 * 294.7 ± 20.7

Mean ± S.E.M. are shown.

* P< .05 vs. the respective nonhandled group (Duncan’s tests) (adapted

from Núñez, 1997).
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brain RNA content (e.g. Renner and Rosenzweig, 1987;

Rosenzweig and Bennett, 1996) and changes in the expres-

sion level of a large number of genes (many of which can be

linked to neuronal structure and synaptic function and

plasticity) (Rampon et al., 2000); (9) morphological alter-

ations in hippocampus and cortex that include increases in

thickness, glial proliferation, perikarya and nuclear dimen-

sions, dendritic branching and spine counts and higher

synaptic density (e.g. for reviews, see Diamond, 1988;

Renner and Rosenzweig, 1987; Rosenzweig and Bennett,

1996) and (10) hippocampal neurogenesis in adult animals

(Kempermann et al., 1997; Van Praag et al., 2000).

At first glance, this overview of EH and EE neuro-

biological effects would appear to suggest very few con-

nections between the two treatments, although this could be

partially due to the focus of research interests (i.e. the main

variables/parameters studied for each treatment ), having

been divergent from the beginning (already in the 1950s and

1960s) of these two paths of research. Nevertheless, some

interesting similarities arise as, for instance, both EH and EE

increase hippocampal type II GC receptors and NGF (e.g.

Meaney et al., 1988; Mohammed et al., 1993) and both

treatments appear to facilitate hippocampal synaptic trans-

mission and plasticity (including long-term potentiation)

(e.g. Hargreaves et al., 1992; Sharp et al., 1985; Wilson

et al., 1986). These possible commonalities are discussed in

Section 6.

6. EH and EE prevent age-related impairments: are

there some common mechanisms for their behavioral

and neurobiological effects?

6.1. Effects on age-related impairments

In rats and in parallel to a long-lasting attenuation of

emotional responses to stressors (although in the case of EE

caution is still required, because as mentioned in previous

sections the evidence is still far from conclusive), both EH

and EE prevent the age-related impairments of spatial

learning/memory (e.g. Escorihuela et al., 1995c; Fernán-

dez-Teruel et al., 1997; Meaney et al., 1988, 1991; Steimer

et al., 1998) and increase the expression of hippocampal GC

(type II) receptors. Research with EH indicates that the

effect on GC receptors is a likely consequence of a reduc-

tion of HPA axis hormonal responses (Meaney et al., 1988,

1991; Mohammed et al., 1993; see also Larsson et al., this

issue) (Table 2), whereas the issue is still open concerning

EE, because there is no evidence of altered HPA axis

activity in EE rats although it has actually been reported

very recently in mice (Roy et al., 2001).

Related to that and concerning the consequences of these

forms of stimulation on the aging brain, it has been shown

that EH prevents age-related neurodegeneration in the

hippocampus of nonselected rats and of psychogenetically

selected lines of rats (Meaney et al., 1988; Fernández-Teruel

et al., 1997). Furthermore, work from our laboratory sug-

gests that such a neuroprotective effect is also produced by

EE treatment and when both EH and EE are administered

together (Fernández-Teruel et al., 1997), which in turn

appears to induce glial proliferation (González et al.,

1994; Renner and Rosenzweig, 1987). Whether these neuro-

protective effects of both EH and EE can be explained by a

reduced exposure of the hippocampus to GCs (Meaney

et al., 1988, 1991) remains to be elucidated, although the

results of Steimer et al. (1998) and those of Table 2 would

tend to be congruent with that contention, at least in regard

to EH.

Although no differences in either basal or stress-induced

corticosterone levels have been thus far reported in EE-

treated rats (reviewed by Larsson et al., this issue), it

appears to be a plausible hypothesis that EE rats could have

a more adaptative HPA axis system, as they show (in a way

similar to EH-exposed rats) elevated expression of GC

Table 4

Effect of EH on NMDA-induced convulsant seizures and death

Convulsant seizure Mortality

Nonhandled (%) Handled (%) Protection (%) Nonhandled (%) Handled (%) Protection (%)

RHA-I/Verh

Saline 0 0 – 0 0 –

NMDA (30 mg/kg) 0 0 – 0 0 –

NMDA (60 mg/kg) 42.9 0 100 14.3 0 100

NMDA (120 mg/kg) 12.5 14.3 0 12.5 14.3 0

RLA-I/Verh

Saline 0 0 – 0 0 –

NMDA (15 mg/kg) 50 14.3 71.4 0 0 –

NMDA (30 mg/kg) 50 57.1 0 0 0 –

NMDA (60 mg/kg) 62.5 42.9 31.4 25 28.6 0

NMDA (120 mg/kg) 71.4* 57.1* 20 71.4* 28.6* 60

Two-month-old female rats were injected intraperitoneally with different doses of the glutamatergic agonist and observed for 1 h. The percentages of animals

exhibiting seizure or mortality and protective effect of EH are shown. n= 6 (saline controls) or n= 7–8 (NMDA injected).

* P < .03 between nonhandled and handled groups (one-tailed Mann–Whitney U-test on the latency of convulsions).

A. Fernández-Teruel et al. / Pharmacology, Biochemistry and Behavior 73 (2002) 233–245 239



receptors in the hippocampus, which probably provide them

with a more efficient negative feedback mechanism in that

system (behavioral experiments lend support to this idea)

(e.g. Larsson et al., this issue). This, in turn, should make

EE animals more resistant to the effects of stressors and less

vulnerable to the deleterious neurotoxic processes that

prolonged exposure to high levels of GCs can potentiate

at the hippocampal level (Meaney et al., 1988, 1991;

Mohammed et al., 1993; Sapolsky, 1992). It should be

acknowledged, however, that there are only two indirect

findings, which could lead some credibility to such a

hypothesis in regard to EE, the first being the aforemen-

tioned changes in hippocampal glucocorticoid receptor

expression in EE rats (Mohammed et al., 1993) and the

second being the recent finding of a lower corticosterone

response in enriched BALB/c mice exposed to a (predatory)

cat odor (Roy et al., 2001). Thus, that hypothetical reason-

ing remains essentially speculative and pending of experi-

mental demonstration.

6.2. Insights into shared effects

In spite of the intrinsic potency of factorial (2� 2)

experimental designs for the study of interactions among

treatments and thus for the elucidation of possible shared

mechanisms, very few studies have been performed in

which EH and EE are simultaneously compared and/or

administered in combination (i.e. in the form of a factorial

design). Of these, some reports indicate that positive EH

and EE effects on both spatial and aversively motivated

learning tasks appear to be additive or, in any case, not

interactive (Escorihuela et al., 1994a, 1995b,c; Fernández-

Teruel et al., 1997; Pham et al., 1999), although some

EH�EE interactions have been found in reversal spatial

tasks in aged animals (Escorihuela et al., 1995b). Additivity

or absence of interactions is also the common result when

considering the consequences of EH and/or EE (alone or

combined) on emotional or fear-related behavior (Denen-

berg et al., 1978; Fernández-Teruel et al., 1992a,b; Garba-

natti et al., 1983; Jones et al., 1991) and on novelty-seeking/

preference (Fernández-Teruel et al., 1992a). However, a

study by Denenberg et al. (1978) deserves mention, in

which clear interactions between both treatments appeared

with respect to open-field activity in right brain-lesioned

rats. Likewise, Pham et al. (1999) reported interactive

EH�EE effects on hippocampal NGF levels (which are

otherwise increased by both treatments) (see previous sec-

tions) (Pham et al., 1997, 1999).

Given the scant evidence of EH�EE interactions

reported thus far, which might suggest that both treatments

act upon different mechanisms, other possible factors should

be first taken into consideration. Interaction effects (by

applying ANOVA) are much more difficult to realize,

primarily because of the mathematical characteristics of

ANOVA that clearly favor the appearance of main factor

effects (Wahlsten, 1990). This is especially true when some

of the main factors are very potent (for instance, by having

many levels) and predictable in regard to the direction of

effects, for example, when (as is the case in many learning

or ‘‘repeated testing’’ experiments) there is a ‘‘trial’’ and/or

‘‘testing day’’ within-subject factor or when there are

several (more than two) between-subject factors that can

have even opposite effects on a given variable (for examples

of this, see Escorihuela et al., 1994a, 1995b,c; Pham et al.,

1999; Wahlsten, 1990). Hence, it is quite possible that

designs studying EH�EE effects do not show interactive

effects because these remain ‘‘hidden’’ (because of the

aforementioned reasons) even if they may actually exist.

Thus, with the available information obtained from

factorial experimental designs (combining EH and EE treat-

ments), it is difficult to make a general statement about the

outcomes of these treatments. Therefore, returning once

again to studies that have separately examined EH or EE

effects, the data tend to support the idea that both EH and

EE enhance exploration under novelty conditions. Novelty

by itself (as that involved in the enriched environments) and

neonatal handling are mildly stressful conditions that pro-

duce HPA axis responses (e.g. increases in circulating

corticosterone levels), and moderate increases in cortico-

sterone levels are known to improve learning/memory

processes (e.g. Denenberg, 1975; Larsson et al., this issue;

Sandi, 1998; Sharp et al., 1985). This leads to the logical

hypothesis that EH and EE should be able to produce some

kind of facilitation/potentiation or plastic effects on neural

mechanisms, subserving a role on the type of cognitive

processes that both treatments improve (e.g. several types of

learning). In fact, although the evidence is still scarce, there

are indications that EH and EE facilitate synaptic processes

at the hippocampal level, including LTP, even in young rats

(Green and Greenough, 1986; Hargreaves et al., 1992;

Sharp et al., 1985, 1987; Paylor et al., 1992; Wilson et al.,

1986). Interestingly, such a facilitation of hippocampal

synaptic responses seem to be paralleled by EH- and EE-

induced increases in the expression of NGF in the same area

and of glucocorticoid (type II) receptors (Meaney et al.,

1988, 1991; Mohammed et al., 1993; Pham et al., 1997,

1999). These are striking parallelisms, as memory impair-

ments in aged rats have been associated with impaired

hippocampal synaptic plasticity, reduced NGF levels,

decreased GC receptor levels and hippocampal neurodegen-

eration (reviewed by Mohammed et al., 1993). It is con-

ceivable, therefore, that NGF elevation produced by EH and

EE and/or the apparent optimization of GC-related neural

processes induced by the treatments (see Meaney et al.,

1988; Mohammed et al., 1993; Sapolsky, 1992) could help

to maintain hippocampal synaptic plasticity, learning/mem-

ory function, better ability to adapt to (or to cope with) stress

or conflict and protection from age-related emotional or

cognitive deficits and neurodegeneration (e.g. Mohammed

et al., 1993; Pham et al., 1999; Sapolsky, 1992).

The issue of whether some of those effects can be

considered as actual mechanisms still needs much further
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research. The precise ontogenetic stage in which some of

those treatment effects are detected is of great relevance. In

this sense, it is worth noting, for instance, that EH-induced

corticosterone elevations were observed in 2-day-old rats

(e.g. Denenberg, 1975), whereas the appearance of EH

effects (on HPA axis responses and hippocampal GC

receptors) have been shown to already partly depend upon

the integrity of brain 5-HT systems in the neonatal period

(reviewed by Anisman et al., 1998). Also interestingly,

some hippocampal plastic synaptic effects of EH have been

observed in young rats (around weanling age) (Paylor et al.,

1992; Wilson et al., 1986). As these phenomena could be

related to glutamatergic transmission (e.g. NMDA recep-

tors), the study of the role of such a neurotransmitter system

on EH and EE effects at very early ages seems warranted. In

this sense, there are indications that glutamate can play a

role in EH effects, specifically because of the attenuation of

the ‘‘GC–glutamate–calcium’’ neurotoxic cascade (Sapol-

sky, 1992) and there is also suggestive evidence for a EH-

induced protection against convulsions and death produced

by NMDA in young rats from the RHA and RLA strains

(see Table 4). Enrichment effects on spatial learning have

also been shown to be mediated by glutamatergic NMDA

receptors (Liljequist et al., 1993).

6.3. A consideration of unshared neural and behavioral

effects

Although, as noted above, some similar behavioral and

neural consequences have been found after EH and EE, that

picture would be overly simplistic if we do not take into

account that many differential effects of both treatments

have been reported along the past 50 years. If one should

quickly summarize the main findings reported in EH and EE

studies, it becomes clear that emotionality/anxiety/stress and

GC-associated processes would appear among the most

prominent aspects affected by EH (e.g. Denenberg, 1975;

Fernández-Teruel et al., 1997; Levine, 1957; Levine et al.,

1957, 1967; Meaney et al., 1988, 1991), whereas learning,

physical activity and/or interaction with the enriched envir-

onment, information processing and plasticity-related neural

effects (i.e. neurogenesis, synapse formation, dendritic

branching, etc.) would seem as the main processes influ-

enced by EE (e.g. Bennett et al., 1970; Mohammed et al.,

1993; Renner and Rosenzweig, 1987; Rosenzweig, 1979;

Van Praag et al., 2000). Thus, because most behavioral

(including learning) tests involve emotional/stress responses

to a some extent but also depend upon information process-

ing, it is quite possible that both manipulations (EH and EE)

could lead to similar behavioral effects even by affecting

different underlying neural mechanisms (e.g. enhanced

learning of some tasks may be due to relatively low stress

levels due to EH or enhanced information processing due to

EE). Similarly, neurobiological phenomena such as neuro-

degeneration and age-related cognitive decline or their

prevention could be the outcome of fundamentally different

processes, either related to changes in chronic stress levels

(and stress-induced neural damage) in the case of EH or

related to changes in the levels of sensory and cognitive

stimulation (known to affect neural plasticity) in the case

of EE.

Alternative hypotheses, however, such as the fact that EH

could also affect (already in very early stages of devel-

opment) information processing, should not be completely

ruled out, because in most cases that treatment involves not

only handling but also repeated exposure of the pups to a

novel cage lined with paper towel (so allowing animals to

explore new environments) for some minutes daily. In

addition, hippocampal long-term potentiation has been

shown to be facilitated in young EH rats (Wilson et al.,

1993). Nevertheless, from a behavioral standpoint, that

hypothesis should be tested in very young animals while

receiving the EH treatment and using tests devoid (as much

as possible) of emotional components.

On the other hand, as mentioned in previous sections, the

finding that under some testing conditions EE mice showed

reduced corticosterone levels (Roy et al., 2001) leaves the

possibility open to more exhaustively explore whether that

finding extends to other experimental situations and species

(e.g. laboratory rats) and whether it is (or it is not) related to

the changes in hippocampal GC receptors reported in EE

rats (Mohammed et al., 1993).

In conclusion, it is clear that the available literature

indicates much less commonalities than differences bet-

ween the neurobehavioral effects of EH and EE, as it could

be expected by the apparently extreme differences in the

variables that are manipulated when administering each

treatment. It is striking, nevertheless, that some simila-

rities can be found between them, and it has been the

aim of this work to revise and summarize them. They could

be, as said above, the outcomes of essentially differen-

tial processes affected by EH and EE but, in any case, are

worth investigating.

Studies parametrically combining both EH and EE (in

factorial designs), administered at very early ages and

simultaneously (at the same age), concurrently combined

with candidate neurobiological/physiological measures that

could mediate the appearance of EH/EE effects, are neces-

sary if we aim to better elucidate which are possible (and

possibly common) mechanisms and which are merely part

of the constellation of effects of the treatments.
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